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ESTIMATION FORl DIRICIILET MIXEI) .IODEILS

Steve I.eds and Alan E. Gclfand

ABSTRACT,

Dirichlet mixed modcls find wide apphcation. i'stimation'is usually achieved through the
method of moments. Here we present an iterative' hybrid algoritlmn for obtaining th&'maximum
likelihood estimate employing both modified Newton-Raphson and E-M.methods. This suc-
cessful MILE algorithm enables calculation of a jackknife NILE. Simulation comparison of the
three estimates is provided. The NILE substantially improves upon the moments estimator par- >,

ticularly with _increasing dimension The jackknife NILE in turn offers'dramatic improvement
over the NILE. / -

I. LNTRODUCTION ' - '- " . '

Mixture distributions afford a flexible. rich class of models. A general definition of a mixture
distribution which appears in Lveritt and I-land (1981) goes as follows:

Let g(x 10) be a d-dimensional probability density function with respect to some measure P
on a m-dimensional parameter vector 0 and let H( 0 ) be a m-dimensional cumulative distribution
function. Then

fix) = S0 g(x 10 ) dH(O) (1.1)

is called a mixture density. 1t is called the mixine distribution. If t1 is discrete and assigns positive
probability to only a finite number of points (0 : i = 1. c) then we have a finite mixture where

C
fix) = H !0) g(x 10) (1.2)

i=)

Throuuhout the literature on mixture distributions the goal has been to estimate Ht assuming
a parametric form e. Finite mixtures date back to Pearson (194) who attempted to estimate the
five parameters in a mixture of two normal distributions. Detailed discussions of mixtures can
be found in Titterington, ct al. (19S5) and Everitt and lIand (19S1).

Identifiability of the mixture model is a crucial issue. Teicher (1961.1963) was the first to
eivc a definitive answer to this problem. By definition, a class D of mixtures is said to be iden-

tifiable if and on' if for "i fix) e D the equality a.e. ji of the two representations:

fO g(x I 0) dli (O) = f0 g(x 10) dtt(O) (1.4)

implies that H'(0) = H(O).

We will assume that H itself is from a parametric family indexed by a and that the goal is
to estimate a based on observations, x, from

flx In) = f() g(x 10) • dll{O Ia)(15

Discrete fix I a) are more commonly referred to as compound distributions. I lere we will
consider X to be a vector of counts and 0 (which will be a vector within the unit simplex) will



characterize the probabilities that a particular count within the N-vector will be incremented.
Models for g include the multinomial distribution having dcnsity

n! k O, k k

90_(x_,x2 .xk) n , xi = n , 0. = 1 (1.6)
k xI=I 

i=

i=1

and the negative-multinomial distribution, having density

k-I(n + xi - l)!
g , .. x= -I k- k-I

0 ( - j)n  < 1 (1.7)
(n- 1)! I x j= j=I j=I

In both the multinomial and negative multinomial cases the random variable is defined by
a particular stopping rule on the generalized Bernoulli trials. For the multinomial case the ran-
dom variable is observed when n generalized Bernoulli trials are completed. For the negative
multinomial case the random variable is observed when a predesignated k"h cell fills to size n
More broadly for a specified stopping rule on the generalized Bernoulli trials we say that the re-
sulting random vector, X., of observed counts for the k cells, follows a general occupancy distrib-
ution. Examples of other potentially interesting stopping rules are : (1) Sample until both
X, > r, and X > r, , (2) Sample until either A = r, or X = rj. Generally, if A' is an outcome
in the sample space of a general occupancy model

k
go(c) = (0) h(x) n 0 ' (1.8)

i= 1

The natural conjugate choice for It in tis context would be the Dirichlet distribution.

kr( Y_ ai)

ha( k I n o) (n o Y -, > o, i= 1,k (1.9)
I'I r(ai) J-l)=

i=I

The assumption of the mixing distribution being conjugate buys simplicity of form. But in addi-
tion Dalal and Ilall (1983) point out that arbitrary mixture distributions can be satisfactorily ap-
proximated by considering mixtures of natural conjugate distributions. In the present case we
obtain the Dirichlet (or compound) - multinomial distribution

k k-1 k-Ir( i ai) (i [- (xj + aj)) 1-(n - Y xj + aj)

fan(XI,Xk) k"! k i= j= k j= (1.10)

fl xi! n r(a) r(n + a li)

1=1 1=1

n - ZxJ-

k--iX, j=1ni n (ai+ r) n1 (Ctk + r0
- n! i r=O r0

k n-I
FI xi! (a + a2 + ... + ak + r)= I r=0

and the Dirichlet (or compound) - negative Multinomial Distribution
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k-i k k-I(n + xj- l)! a-?v u ) ( -r(xj + ap))r(n + ai,)

fa(XI ....Xk ) = IJ=k i=1 J=1 1z1k
f 0 x,.. k-1 k k-i k(l)(n - 1)! n xj! n- r(ai) r'(n + Xj + ad)

j=1 i= ) j=1 i= l

k- k-X, - -I
(n + x" x- 1)! 1 (ai + r) - (c k + r)

j1 i=1 r=0 r0
k-I k--

(n-1)! l x)! n+ X i-
j=l j=

n- (a I + a2 + ... + ak + r)
r 0

Extension to a Dirichlct general occupancy distribution is apparent.

With regard to identifiability let Q2 be the collection of all possible distinct events in the
sample space and let A'(,Q) be the cardinality of 0 . For any k dimensional a-vector we can
construct N(92) equations which describe the probabilities for all simple events in 0. Since all
of the probabilities must sum to I we will have A'(92) - I independent equations and k unknowns.
If we have at least as many equations as we have unknowns, we cannot choose any other n-vector
that will generate the same probabilities. Therefore, the condition for an identifiable Dirichlet
mixture will be

(N( 2) - 1) - k > 0 (1.12)

Hence, the Dirichlet negative multinomial is always identifiable, while the Dirichiet multinomial
is, provided n > 1.

Applications of these two mixture models are extensive in the literature. In particular see
Leckenby and Kishi (1984), Rust and Leone (1984), Kalwani (1980), and losimann (1962,1963).

2. ESTIMATION APPROACHES

Method of moments estimation is most commonly used in the Dirichlet mixed models (see
e.g. Mosimann (1962.1963), Johnson and Kotz (1969) ). Maximum likelihood estimation re-
quires a difficult numerical maximization and has been studied primarily in the Beta mixed (k = 2)
case. (See e.g. Griffiths (1973), Snuith (1983), Williams (1975) ). Computation of NILE's is the
primary issue of section 3. Effective computation of the NILE enables us to propose a jackknifed
MLE as a third choice. Mean square error behavior of the jackknife estimator is extremely
promising.

We first review the method of moments estimator. First and second moments a-;ociated with
the Dirichlet multinomial in (1.9) are

EX = n (2.1)

VarX (n ( - -) ) (2.2)

C+ 1 ,X.) = - (n -) (2.3)Co , ,)-1 + 1au !_a za

To obtain the moments estimates we would have the relationship n a, / Za = ,. Since there is
no constraint on the a, 's , we need an extra equation There is no unique criteria to detcrmine
this extra equation and therefore can be considered an ad hoc choice.
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Mosimann (1962) noticed that the covariance structure for the Dirichliet-multinomial is just

a constant times the covariance matrix for a multinomial with parameters ( ----, ..... -!!L ) .

ZDM c *-M,, . ,) (2.4)

wher n + N
1a I + !a

Using this relationship the gencraized variance would be I ZDM = cl- I . In order
to avoid singular matrices, (k-1) terms of the covariance matrix are used.

For a sample ( X, ...., X,, ) t = 1,....m (i.e. m replications) from this distribution, Mosimann
showed that flic NIME's arc of the form

^ i(n - c)a, - i 1= ... k (2.5)

n(c - 1)

c - k- I k- 1 (2.6)
Iv--MI  Tj r )(n - Y_- ), n

j=1 j=1

Here ISf is the determinant of the sample covariance matrix
s 2  =  M (X , _ 2

-2! m 1.-.) k-i (2.7)

S (= - M i,j= 1 . k-1 (2.8)
tl

In order for a to be feasible, 1 < c < n. If this condition is not satisfied then we will say that
the MME does not exist for this mixture case.

First and second moments associated with the Dirichlet negative multinomial in (1.11) are
a.

EX = n I Ok> 1 (2.9)Qk - I1' k

VarA = n +k (n ), a k > 2 (2.10)
CuI- 2 ak-i a - (

n+ak- a+ aj,

Co (, ) 2 (n akI k - ak > 2 (2.11)

jj' I ... k - I

Again Mosimann (1963) exploited the covariance structure of the negative muhinomial and
Dirichlet-negative multinomial by observing that

DNM = , ,

NM (p ... pA)

where p'. =a, j = 1 ,... k- I P'k = k

to yield

A (n+c) p -
al- n j A
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(2c + - 1)ak - (2.13)
c-I

For some reason Mosimann did not present the generalized variance ratio estimate of c for the
DNM case. Instead he chose c by ignoring the overall covariance structure and equated

TR('D\.%) = c" TR(ZN.f) (2.14)

An alternative estimate consistent with the Dirichlet Multinomial approach is one that accounts
for the full covariance structure. Therefore we use

c - k-I k-I (2.15)

I-NM' (-I .j) (n + 1 . ),'n
j=I j=I

We should remember that this choice of estimate is ad hoc. However, we will call the resulting
estimate the NIME, even though it is not uniquely determined. Again, if c < 1 we will say that
the MME does not exist.

There has been no study up to this time which evaluates the performance of these estimates
in both the DM and DNM cases. Since the estimates in both cases are rational functions of
consistent estimates (DNM case a, > 2 ) ,they too are consistent (Slutsky's theorem). Results
of simulation studies will be presented in section 4.

With regard to maximum likelihood estimation for multinomial and negative multinomial
distributions, NILE's and MME's are the same. In the mixture case, MLE's cannot be written
out in closed form. In order to proceed with maximum likelihood estimation it is sometimes
more convenient to write the compound distribution of interest under a particular
reparametrization. The reasonig behind this is that we will ultimately need an iterative procedure
to obtain the NILE. If we can choose a parametrization such that the parameter estimates do not
Ivary much in the region of best-fitting models', then we will have a more efficient iterative pro-
cedure. These new parameters are called stable parameters. Ross (1970) discusses maximum
likelihood in this context.

In the Dirichlet multinomial model we reparametrize to

kA-

n- X-
k-Ix I -I k-I

fl fn (p + rO) 1n (I - : P +tO)
S I r---0 r=O j=l

f,0(-)= X,...,Xk n -I (I + ro)

r-O

0 < pi < 1, i= 1... k- 1, 0 > 0 (2.16)

where pi = i-- ] ... ,k-I and 0 (2.17)

Under this parametrization p, can be thought of as the mean parameter of the original p,, and 0
can be thought of as a shape parameter. Griffiths (1973) seems to have been the first to use this
representation for the (k = 2) case. Under this parametrization, f 0 () is exactly a mutinomial

A-]
with parameters ( pYp2.... , I - X _j ) . Thus departures from 0 = 0 suggest departures from
pure multinomial variation. 0 in this setting is sometimes called an overdispersion parameter.
From expression (2.4) we notice that

n+1 (2.18)
0+ I



so when 0 = 0, c = 1.

Skellam (1948) examined the log of expression (2.26) for the case of (k =2) and took the
natural 'derivative log likelihood' approach. lIle proposed a recursive procedure through the de-
rivative log gamma or digamma funtion. Since the digamma function must be approximated. thfis
procedure for the general case is not appealing.

Using the reparametrization, (2.17). the Dirichlet negative multinomial becomes

k-IX
, -1 n-I k-I

k- l r (i+r0) 11 (1- p +rO)
n + Z xj-I i=1 r=O r=0 j=I

f oC) = (=

n-I n+ xj -I

l (1 +rO)
r=0

0 < Pi < 1, 1, ... ,k- l, 0 > 0 (2.19)

When 0 = 0 we have a pure negative muhinomial distribution, so 0 again conveys departures
from negative multinomial variation. In this case, due to the constraint on the second moments
(i.e. ak > 2), 0 < 0< 0.5 and

k-I

1- 1 pj + (n - 1)0
j=j

c - Ik-I

1 - Y i j - 20
j=i

The likelihood system of equations in the DM ( p, V, - 1, 0 ) case becomes

M X," - IM XA I I
- =0 i .k 1

t~~i - k- I-i1 t 0 Pi +-" rO t=1 r=O I -z j + ro
j=1

n, r
11r0I+ = 0 (2.20)

The likelihood systemn of equations in the DNM ( p i., lik - 1, 0 )case becomes

S= m X11 - I I M n, - I

4~. k-, =0 i k I
r=1 Pir0 11' r0 I 1 j + +rO

m k- x, r m r

-~ ~ r xk-i

IO t=1i=1 r=O Ai+ r 1 I r=O 1 - ij+ rO

k - j=I

n + - x-
r = 0 (2.21)

= l r=0 + r

It is easily seen that for both (2.20) and (2.21) the likelihood equations do not yield a solution in
closed form ; an iterative procedure is required. Once MLE's for (a, 0) are obtained, we can easily
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convert them to MLE's for a. For both distributional modcls we can obtain straieghtforward
expressions for Fisher's information matrix by taking a second derivative of the likelihood. See
Leeds (19S7) for details. It is important to note that unequal n, can be used in maximum likeli-
hood estimation, but it is unclear how to proceed for moments estimation. Ad hoc weighting
procedures have been suggested for the (k = 2) case (see e.g. Kleinman (1970) ). To allow com-
parisons we will take n, equal in our simulation studies.

We also propose jackknifing of the NILE. The jackknife idea dates back to Quenouille
(1956) and is thorouehly discussed in Efron (19S2). We consider the jackknife procedure for two
purposes. First, we hope to obtain a bias reduction. hence, a possibly better MSE performing
estimator (see Schucany, et al. 1971). Second, we wish to study the performance of the jackknife
estimate for possible confidence interval devolopment.

We recall that giver a sample of size m and a point estimate 41 of unknown parameter 4,
the jackknife constructs what are known as "pseudovalues" which are defined by the relationship

A A

rl=n ALL_(m - l)qI(i) i = 1,2, ... rn (2.22)
A A

where (FAL is the original estimate with all observations included and (1,, is the computed value
of the estimate with the P'" observation removed. We would then compute the average and
standard deviation for the set of pseudovalues and call them (l" and s. respectively. IHere

- _ 1 m , (2.23)

i=1
Xr ((Fe - q )2

2 = = (2.24)

A

Our jackknife variance estimate of Var ( ALL) (possibly of Var ((I))) would be s5 - m - s2 and
we would then construct the confidence set

A

4)ALL - SJ (2.25)

Successful jackknifing depends upon successful computation of pseudovalucs emphasizing
the need for an effective iterative NILE procedure. We develop such a procedure in the next
section.
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3. ITFERATIVI IPR)CIDURES FOR MILI'S

In this section we investiate in detail computational methods for obtaining the NILE. When
maximizing the og likelihood function it was proposed that v\e solve the likelihood system.

?Y_ - 0 i= _. k-

c__' - 0
60

Recalling that the solution to these equations (if it exists) can not be represented in closed form
for the mixture cases discussed, numerical methods sometimes referred to as "root finders" must
be considered. The most common methods for determining the roots for a system of nonlinear
equations are the Newton-Raphson Method (NR) and the Method of Scoring (NIS).

If we let 4) = (P,.. (hA) denote the vector parameter and LP() be the log likelihood
evaluated at (1) , then the NR algorithm at iteration (r+ 1) is defined by

q)(r+ 1) = q)(r) _ rD 2 2/,((I)(r))] - iD,Y(lir)), r = 0.1.2 .... (3.1)

and the MS algorithm is defined by

((r + 1) = Yr Il((_(r)) - D ( ( ,')). r = 0,1,2 .... (3.2)

In both cases the non negative constant y. can be thought of as a damping term ( -t, = I is the
usual version ). D and )2 are differential operators representing generalized first and second de-
rivatives respectively, and I(' ,V) is Fisher's information matrix. We consider only the NR algo-
rithm sice D2

yt(I" ;) is available in closed form. The MS algorithm requires the numerical
computation of an expected matrix at each stage. In fact, we use a modified Nexton Raphson
approach to avoid the required matrix inversion in (3.1) at each iteration. There are many dif-
ferent versions of the modified Newton-Raphson method with the least attention given to the
simplest version. This version can be constructed by computing only the second derivatives on
each coordinate separately and setting the mixed partials to zero.

Let

Hi, = Di L'(,) i = 12, ... k (3.3)

I!0 = O, i = 1. k

Now

- 1 2
Ili, (D ij L ((I,) ) - , , . . k(3 .4 )

,2

H-I ij = .k

yielding the system of equations

01+i) = <]+i) - ~'l

72 
2
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k ) k l)r )- 2 _(3.5)

which can be thought of as k versions of the univariate Neton-Raphson method. This diagonal
version, where equations would be updated as each new coordinate becomes available, will be
referred to as the Modified Newton Raphson (MNR) algorithm. We remark that (1) Conver-
gence of the NR or MNR algorithm is typically dependent on the starting solution (J)0' . (2)
When MNR converges, it converges quickly. (3) The MNR algorithm may not converge to the
root (W even when started 'close' to 1V . (4) For what follows we take the parametrization

= (pa, 2,. 0) in which case thez MNR algorithm becomes

(r+1) r) _CIPi i= 1,2,.k- 1 (3.6)
p1  -2 __= ,

C Li

0+ 1) Or) 9.2 ( - (3.7)
-02

For the Dirichlet muhinomial model, first partials are given in (2.19) with

-2 m X1 m Xk

21=1 r= P + 2t r 0 -k ' ro2

j= I

-2 m k xv 2 m Xk- 2
2- r Y I k I

[02 t= i= I r0 (p..i + tO) t= i r 0 (1 - P lad + to)2

, n , 1 2 j = l

+ r (3.8)
1=1 r=0 (I + r0)2

For the Dirichlet negative multinomial model, first partials are given in (2.20) with

2 m xt, --1 + m - 1 I!

2 1=1 r= 2 t= r r=0 ( I E +r) 2

2 
1

j=1 2
a02 (Pi +I r( 2  Y n - 2

I ()== ) I- I +
k-I

n, + _x,) --

m r 2
+ 10 2 (3.9)1 = I r~o ( + 0)2

A major problem with the NR or MNR algorithm is the need for a good starting solution.
The MME would seem to be a reasonable starting solution. but as mentioned before, there are
many cases where we cannot compute a moments estimate. Even if we can compute the MME,
what recourse do we have if this starting solution causes the algorithm to diverge?

The EM algorithm (Dempster, et aL., (1977) ) offers an alternative approach The 'algorithm'
was originally proposed for the trcatment of incomplete data, but can accommodale many other

9



situations. The [FM a]Lorithm generates from some startin. soluion (D " a sequjence (l ' of es-

timates in the following steps

[-STEP: Evaluate E(Yl(FI)ij y, qI)'~ ~ (l)(r') (3.1(0)

M-STEP: Find (I) = (,)(r+ 1) to maxmiz )F r)) (3.11)

One of the morc appealing properties of the EN! algorithm is that under mild conditions (see
eN. u, 19831) each succesive iterate increases the lkelihood tunichion.

When the complete data likelihood comes from a regular exponential famil-y representeld bs'

AIl) bo) exp!(F) -to) T), 2((])) (3.13)

where to,)T denotes a (k x 1) 'complete data' sufficient statistic, the E and NI steps take on a more
explicit form.

[-STEP Estimate the complete data sufficient statistic by finding

t() EiO iX, ,(r)) (3.14)

NI-STEP :Determine (1)"+ 1 as the solution of the equations

E (10-) 1 (1) = i r) (3.15)

The NI-STEP is a maximization step because this condition must hold when obtaining a maxi'-
mum under a regular exponential family model. Cycling back and forth between Y' and NI steps
should yield the NILE when and if the iterative sequo-nce stabilizes. At the NILE (W, the following
relationship holds:

E(i~y) I x, (F ) E(to-) 1(1)) (3.16)

This equality of conditional to unconditional expectation at the NILE has also been noticed by
other authors (Baum, et al., 1970, Orchard and W~oodburv, 1972, Sundbcre-, 1974).

Under DiLrichlet mixture we have the 'incomplete data' X = (x,,.xh) or ((x,, x.,-
as the case may be, and the 'complete data' Y = f (x,, ... ,, , p,. pA)Y Thus

f~l 11) = J( _, p1(11) =J(lX I p) D(E a) (3.17)

where fi ,x I L)) represents the multinomnial or negative multinomial and /)(p represents the
Dirichlet distribution. Hence the distribution fij! 1 (1)) is an exponential family distribution. If we
now sample (x,,1 . x,,), I z 1,2,., m wve have

L(qF) = llrl [1k j/(~. tkIP -- plk) D(pl,..- Pk Ial., ak)I (3.18)
t=

k
V( aj)

mm k a, k m
n1 nfl(, 8)I [n [ln A j exp( X a' 10 lop") k

t 1 1i=I1=1 =1 rF(a)

where (1) a .,) and t(y) = (p) Xlog, i" 1 k.
t= I

It is interesting to note that 1(p) is always the same under Dirichiet mixture and thus does
not depend on the original distribution being mixed.

To put together the E and MI steps we must compute

m M
E(t(p) I(D) = E( 1 log p1 Ij and E(i(p) Ix, (1)) = E( E log p I , i)(3.19)

10



Now E( 1 logp 1;I ) = p E(logpt) = PzE(logp,1I )
1= 1 1= 1

Using the expansion logpli = - after some manipulation yields
jJ I

in cc 1 . !a ---i+ s- 2

E( X log/,,:I) = - n --" [- (3.20)t= j=Js !a + S -I-l

In order to evaluate E( Z logp, , x ) we notice that the distribution of p 12 is also

Dirichlet. Similar calculations to that yielding (3.20) produces

mo I ' (t) - Yi(t) + s - 1
E( 2: logpalXt ) = - X X- , [1 (3.21)I=l t=lj=lj s=1 =y(t) + s - 1

where -yj(i) = Xi + al, i = 1 ... k

Observing (3.15) and (3.20) we see that in our case the M-step does not admit a close form sol-
ution. ihe .I-step would have to be solved iteratively within each iteration. Instead we use the
necessary condition (3.16). Solving the stable point problem in (3.16) will be called the modified
EM algorithm (or MEM algorithm). Solving the EM algorithm will solve (3.16). However,
solving (3.16) does not necessarily provide the solution generated by the EM algorithm. unless the
solution to (3.16) is unique. In general under Dirichlet mixture the MEM equations (3.16) are

Y O_ E(1 -ptYI xt, a - E(I -Pti _ ] = 0 i= 1 ... k
t- j=lI

When using the EM algoritlun to obtain an exact solution for the NILE it is well known that
convergence to a solution is extremely slow. I lowever, Redner and Walker (19S4) point out that
a quick climbing of the likelihood surface usually occurs in only a few iteraLions. We hope to
retain this feature with our proposed MEM algorithm.

By a quick inspection we can see that 0 = 0 is a solution to the MEM equations in both
cases. lowever. this result is never achieved unless 0 = 0 is used as a starting solution. Explicit
solutions are not available and therefore a root finding method such as the MNR method can be
used here. The infinite summations can be truncated to obtain approximate solutions.

To solve the MUM equations we would use the (., 0) parametrization and construct the
MNR system in the same way it was constructed for the orginal lkeliood equations. In this case

Y-'(4)) is replaced by expression (3.16) yielding the system

1)(r+ (r) _ E(t(') Ix, (P) - E(t(v) I(I) iD)

=' I(t0)x, 4) - E(to') Il')l = , =)

0(r+ 1) = O(r) E(t(v) Ix. (1)) - E(t(y) I (P) (3.2
CI E(iO') I x, (1)) - E(t0,) I' )l -1

To compute derivatives we use the fact that

11 1' ((F) - exp{ log hz ((F)}

11



exp Y logh (q )} •1 Z I /z (l).I '-
s~ s 1 h3((1)) s= = s (())

We can substitute the appropriate expressions for the derivative in the MNR systern because the
MEM equations are just functions of products of this type. For efficient computation of all
terms, recurrence relationships for the product functions and derivatives can be created for in-
creasing j.

Finally we state our NILE algorithm. It can be thought of as a hybrid algorithm given by the
following steps:

I) Choose a starting solution (DII). If ()MME exists then ,0, = q MME If 4')" does not exist then

starting solution (E, . , -L) is used.
k

2) Iterate using the MN R equations in (3.7) with derivatives given by
expression (3.8) or (3.9) .

3a) If step 2 yields a converging sequence {(,) - I) then 4)
1 MLE = 4.

3b) If step 2 diverges then we run about 20 ME M iterations starting at the
last iterate generated by the previous MENI run. If MEM is being run
for the first time then we can start at (),0, MEM is intended to
point faded MNR starting solutions in the right direction. Return to step 2
after 20 MEM iterations are completed.

In concluding this section we address the question of whether the proposed %ILE, algorithm
obtains the NILE. To do so we investigate the likelihood surface and ask the following questions:

A) If - = 0 , might we have obtained a minimum or saddle point?
N(I)

B) If--Y = 0 yields a maximum, is it a global maximum?

C) Is .Y unimodal?

For the Y functions being considered, (C) can not be answered analytically in the general case.
Levin and Reeds (1977) have shown that if p,..., p , are known and 0 is unknown, then Y
has at most one mode. This result suggests that unimodality may be preserved even if the p,'s
are unknown.

Assuming that unimodality cannot be verified, we must address case (B). the arrival at a local
maximum. The class of iterative algorithms.

(r+ -) )(r) - Af(.) r = 0,1,2 .... (3.23)

includes both MNR and MENI. Using (3.23) along with a Taylor expansion for Y('', + I) at
(1)(') we obtain

+ =I - ) - (,I --O- (3.24)

If M(,, is positive (or negative) definite, then the iterative algorithm (3.30) is a descent (or ascent)
algorithm. For simplicity we will call this type of algorithm a monotone algorithm. Under a
monotone algorithm, the answer to (B) is yes. For the MINR algorithm, this requires that all
diagonal elements of M(,) are positive.

It is interesting to note that the choice of reparametrization from a to (M , 0) makes a dif-
ference in the shape of the likelihood and in terms of the behavior of the iterative algorithm. This
property reinforces the use of "stable parameters" as justified in a slightly different manner by Ross

12



(1970). More precisely, we notice that the Y function for both Diricllct multinomial and
Dirichlet negative multinonial has the following form under the (a,.... a) parametrization

Y c(x) + XX: log(al + r)-XX log(X:a + r)
tr

If we now look at

0 2 /) i= 1,2. k
Cai

we have

2__(-___)_ y I v 1 i

ea 2 i r (ai +r) 2  7 7 (Y-a + r)2

From this relation (for all i) it is unclear what the likelihood surface might look like and whether
we would obtain a monotone algorithm. Figure 1 illustrates the behavior of the Y function for
k = 2, m = 10, n = 40 based upon the sample x . . . . .x,= 23,31,1,1,3,34,17,32,31,8.

LOOL

-194.01

-241.59

-289.1

-336.76 "

6. / 9.75

0. 0 00

Figure 1. Log Likelihood function under the original parametrization

Under the (g,, p4 - 1, 0) parametrization £T has the form
k-1

= c(, t ) + : Z Y. log(pi + rO)-XX log(l - : gj + rO)-XX log(l + tO)
ti r t r j= l r

Now if we examine the second order partial derivatives on the p, coordinates

13



2 1EE + 11. > 0 i = 1, ... , kC}- i  ir [/ 
+ 

tO
2  

r - 2

+P( 1  rj + r )2

j=

so the log likelihood is concave in all V directions. Figure 2 illustrates this behavior and we can
also see that that LP appears smoother under the (UA, 0) parametrization. To assess whether the

iterative algorithm is monotone we need only examine whether > 0
002

LOGL

-194.09

-294.12•

-394.14 -

.0.95

Figure 2. Log Likelihood function under the reparametrization

4. A SIMULATION STUDY

An extensive simulation study was undertaken to compare the method of moments estima-
tors, the MLE's and the jackknifed MLE's (JMLE). Data was simulated using IMSL routines
GGAMR and GGUBS. Roughly 5000 replications were used. First, we compare MME's with
MLE's. It is expected that the NILE will perform better, and in fact, this is case, often substan-
tially so. For both the DM and DNM case, the parameters to vary are

k: dimension of the parameter space
m: the sample size
n: generalized Bernoulli trial stopping parameter

and a : the Dirichlet parameter vector

14



We present results for few of the k = 2.3.6 . m = 10.40 and n = 40,60 cascs in the following ta-
bles. (See Leeds (lQS7) for additional simulation work). For each estimator under each specifi-
cation we can compute (i) bias, (ii) mean squared error, MSE, (iii) quadratic expected loss using
information weighted loss. QEI., (iv) thc exact covariance matrix, and (v) the inverse of Fisher's
information matrix. BIASM, MSLM, QELM are for the NI.ME: BIAS, MSE, QEL are for the
NILE's. Since we know the true a, we can compute the asymptotic covariance of the NILE's
which is m 'I - '(a) to compare with the exact covariance at the fixed rn. This is of interest
since wc do not know whether the MLE's for these Dirichlet mixed models are asymptotically
efficient. Generally, we can not verify the usual regularity conditions (see Lehmann (1980)).

In the last few tables we present simulation results again based on 5000 replications for a few
cases (k = 2) comparing the JNILE with the NILE.

In summary :

(i) Small sample case m= 10. For both DNI and DNM cases, a feasible MME provided an ac-
curate starting solution for the MNR algorithm. However, 0 - 0 or increasing k were more de-
pendent on MEM backup. When NIME's did not exist, the starting solution was chosen to be

4)(o

This solution performed admirably when the NIME did not exist. The asymptotic covariance
approximation is poor.

(ii) Large Sample case m = 40. For both DM and DNM compounds, the moments estimate was
always feasible and provided a good starting solution for the MNR algorithm. This comes as no
surprise since the MME's are consistent. However, if we were to receive a set of data with une-
qual n,'s , we would not have a MME to start the MNR algorithm. The starting value in (i)
should suffice. Here the asymptotic covariance approximation seems more reasonable.

(iii) For the k = 2 case Shenton (1950) reports that the efficiency of the MME to MLE's is at
least 70% . This result is not contradicted. If we happen to be in this case we do not lose much
by using the MME. Ilowever, for larger k there appears to be a rather dramatic reduction is ef-
ficiency of MME's compared to NILE's.

(iv) JMLE's performed exceptional'ly well in comparison to the NILE in terms of reducing mean
squared error. This result is encouraging for the reason that the evaluation of the J NILE makes
the most use of the NILE algorithm to ensure the successful computation of all pseudo values,
and thus the JMLE itself. However. it should be mentioned that with frequent use of the NILE
algorithm, convergence may be a problem, especially in the small sample case. For instance, if
m = 10 we compute each pseudo value on nine observations. This is a 10% reduction in the
amount of data considered. For the large sample case this would not be so.

15



DIRICIILE T-1 L TI.V0311.IAL TA BLES

a, 0"2 m n

I 1 10 40

Method of Moments Maximum Likelihood Fisher's Fisher's
Covariance Matrix Covariance Matrix Information Inverse

1.513510 1.057329 1.39S952 0.991609 8.951 -6.21 .215 .149
1.057329 1.239158 0.991609 1.168164 -6.20 8.951 .149 .215

BIASM BIAS MSEM .MSE
a, 0.414S02 0.443557 1.685580 1.5956954
a 0.400124 0.429745 1.399257 1.3528449

MSEM = 3.084837 MSE = 2.948540
QELM = 24.835702 QEL = 24.125809

a, 0m m

1 1 40 40

Method of Momcnts Maximum Likelihood Fisher's Fisher's

Covariance Matrix Covariance Matfix Information Inverse

0.074439 0.053271 0.068876 0.047896 35.802 -24.8 .054.037
0.053721 0.073378 0.047896 0.067768 -24.83 35.80 .037 .054

BIASM BIAS MSE.M MSE
a, 0.060176 0.065845 0.078060 0.0732114
a, 0.060324 0.066177 0.077017 0.0721478

MSEM = 0.155077 MSE = 0.145359
QELM = 52.3832-5 QEL = 52.261535

16



a1  a 2  m n

1 5 10 40

Method of Momer.s Maximum Likelihood Fisher's Fisher's
Covariance Matrix Covariance Matrix Information Inverse

1.469407 7.120741 1.240462 5.880053 11.04 -1.593 .027 1.244
7.120741 50.092428 5.880053 40.67265 -1.59 11.04 1.2448.617

BLASM BIAS MSEM MSE
a, 0.603724 0.476951 1.834133 1.4679439
a2  3.684889 2.981112 63.678252 49.5596842

MSEM = 65.512385 MSE = 51.027628
QELM = 28.428756 QEL = 26.017101

a, a2  m n

1 5 40 40

Method of Moments Maximum Likelihood Fisher's Fisher's
Covariance Matrix Covariance Matrix Information Inverse

0.122884 0.601518 0.092132 0.441677 44.16 -6.37 .0680.311
0.601518 4.082731 0.441677 3.162800 -6.374 1.384 .311 2.155

BIASM BIAS MSEM MSE
a, 0.114245 0.085229 0.135936 0.0993962
a, 0.685972 0.547638 4.553290 3.4627071

MSEM= 4.689226 MSE = 3.562103
QELM 67.364333 QEIL = 66.682778
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SQ2 03 m n

1 1 1 I0 60

Method of Moments Maximum Likelihood Fisher's Fisher's
Covariance Matrix Covariance Matrix Information Inverse

0.653 0.428 0.415 0.335 0.188 0.187 11.13 -3.789 0.138 .072
0.428 0.714 0.470 0.188 0.334 0.200 11.13 0.138
0.415 0.470 0.693 0.187 0.200 0.339 -3.789 11.13 .072 0.138

BIASM BIAS MSEM MSE
al 0.474806 0.242310 0.879144 0.3937210
a2 0.475535 0.240140 0.939910 0.3910328
a3  0.475880 0.247340 0.919547 0.4004014

MSEM = 2.738601 MSE = 1.186056
QELM = 62.345719 QEL = 45.055172

0 I 02 03 m n

1 1 1 40 60

Method of Moments Maximum Likelihood Fisher's Fisher's
Covariance Matrix Covariance Matrix Information Inverse

0.056 0.032 0.032 0.042 0.022 0.022 44.52 -15.16 .035 .018
0.032 0.056 0.033 0.022 0.040 0.022 44.52 .035
0.032 0.033 0.058 0.022 0.022 0.041 -15.16 44.52 .018 .035

BIASM BIAS MSIM MSE
0, 0.079744 0.048335 0.06290S 0.0446581
a, 0.078848 0.048255 0.061938 0.0421660
03 0.078873 0.047966 0.063734 0.0437279

MSEM = 0.188580 MSE = 0.130552
QFLM = 95.80314o QEI. = 94.523415
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a, "2 03 m n

1 3 5 10 60

Method of Moncnts Maximum likelihood Fishcr's Fisher's
Covariance Matrix Covariance Malrix Information Inverse

0.938 2.293 3.S84 0.461 1.063 1.815 11.5 -1.02 .164 .308 .543
2.293 10.12 14.89 1.063 4.757 6.833 2.36 .308 1.43 2.00
3.884 14.89 27.13 1.815 6.833 12.75 -1.02 .895 .543 2.00 4.05

BIASM BIAS MSEM MSE
a, 0.622727 0.297014 1.325775 0.54886S1
a2 2.055143 1.002653 14.342457 5.7625477
a, 3.478274 1.721109 39.231529 15.715182

MSEM = 54.899761 MSE = 22.026598
QFLM = 66.28S906 Q[L. = 56.062711

a, Cl, a, m n

1 3 5 40 60

Method of Momcnts Maximum Likelihood Fishcr's Fishcr's
Covariance Matrix Covariance Matrix Information Inverse

0.065 0.134 0.232 0.049 0.098 0.171 45.9 -4.12 .041 .077 .136
0.134 0.620 0.887 1.063 4.757 6.833 9.42 .077 .359 .501
0.232 0.887 1.674 1.815 6.833 12.75 -4.12 3.58 .136 .501 1.01

BIASM BIAS NISEM MSI
a 0.098757 0.04S925 0.074585 0.0510555
a2 0.327434 0.180411 0.726720 0.4933342
a3 0.544S73 0.299283 1.971414 1.3429237

MSEM = 2.772719 MSE = 1.8873134
QELM = 267.365122 QEL = 265.9265337

19



a, c., a, a, 5a 6  in n

I I I I I 1 10 60

Fisher's Information Information Inverse

11.89 -1.66 -1.66 -1.66 -1.66 -1.66 .107984 .034179
-1.66 11.89 -1.66 -1.66 -1.66 -1.66 .107984
-1.66 -1.66 11.89 -1.66 -1.66 -1.66 .107984
-1.66 -1.66 -1.66 11.89 -1.66 -1 66 .107984
-1.66 -1.66 -1.66 -1.66 11.89 -1.66 .107984
-1.66 -1.66 -1.66 -1.66 -1.66 1 .S9 .034179 .107984

Method of Moments Maximum Likelihood
Covariance Structure Covaiance Structure

1.1084 .6072 .5S39 .6386 .6566 .6053 .1865 .0721 .0670 .0718 .0730 .0678
.6072 1.0835 .5656 .6144 .6305 .6134 .0721 .1912 .0698 .0726 .0746 .0732
.5839 .5656 1.068 .6068 .6242 .6028 .0670 .0698 .1858 .0715 .0717 .0681
.6386 .6144 .6068 1.1713 .6543 .6308 .0718 .0726 .0715 .1880 .0702 .0680
.6566 .6305 .6242 .6543 1.176) .6602 .0730 .0746.0717 .0702 .1904 .0695
.6053 .6134 .6028 .6308 .6602 1.1105 .0678 .0732 .06S1 .0680 .0695 .1809

BIASM BIAS MSEM MSE
a, 1.078768 0.177409 2.292481 0.2179630
a, 1.088996 0.182866 2.389933 0.2245902
a, 1.077059 0.170849 2.248338 0.2150239
a4  1.082371 0.179794 2.236290 0.2203275
a, 1.093295 0.175182 2.392863 0.2211166
a 6  1.074797 0.183474 2.285986 0.2146019

MSEM = 13.8728295 MSE = 1.3136232
QELM = 124.469340 QL = 60.31711222
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a 1 a 2 (3 a, a 6  m n

1 1 1 1 1 5 10 60

Fisher's Information Information Inverse

11.29 -.90778 .12301 .04016 ..... 26463
11.29 .04016 .12301

11.29
11.29

11.29 . 12301
-.90778 .9853 .26463 .04016 2.23381

Method of Moments Maximum Likelihood
Covariance Structure Covariance Structure

2.056 .2401
1.222 1.9842 .0968 .2347
1.210 1.1634 1.945 .0944.0909.2260
1.223 1.2689 1.166 2.086 .0972 .0968 .0877.2332
1.213 1.2033 1.167 1.222 1.949 .0976 .0980 .0881 .0914 .2281
7.610 7.3565 7.232 7.709 7.333 49.24 .6347 .6131 .5841 .6212 .6067 4.8

BIASNI BIAS MSEM MSE
a, 1.394611 0.203828 4.00442 0.2816740
a2 1.383026 0.205197 3.89698 0.2768250
a 1.378675 0.198051 3.84595 0.2652151
a4 1.380749 0.199S32 3.99241 0.2733169
a, 1.381548 0.200946 3.85799 0.2684726
a, 7.250609 6.082229 101.81507 6.0822289

MSEM = 121.41281 MSE 7.4477325
QELM = 169.84660 QEL 74.8955841
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acI 2 a 3 ta t aa m n

I 1 1 3 3 3 10 60

Fisher's Information Information In% cr,,

10.92 -. 72916 .1265 .(407 .046-.....
10.92 X(17 .1265 .14fl7 .147374

10.92 .0407 .0407 .1265
2.486 .,45 .534 .534

2.4S6 . .147374 .534 .845 .534
-. 72916 2.486 ....... .534 .534 .S45

Method of Moinients Maximum Likelihood
Covariance Structure Covariance Structu:

2.211 .2296
1.352 2.1805 .0931 .2498
1.428 1.3051 2.295 .0925 .0932 .2475
4.989 4.7342 4.947 19.97 .3397 .3551 .3415 1.826
4.718 4.5615 4.6S4 16.5S 18.61 .3215 .3423 .3179 1.216 7
4.924 4.6910 4.815 17.07 16.41 19.39 .3368 .3546 .3391 1.272 1.215 1.8

BIASM BIAS MSI-M MSE
a 1.391406 0.202547 4.14743 0.2706460
02 1.387812 0.20s158 4.10649 0.2931731
a3 1.391962 0.205864 4.21970 0.2898637
a4 4.334136 0.67350( 38.75543 2.2733703
as  4.26925S 0.69777 36.84389 2.1189765
a6 4.345345 0.6S2773 38.27363 2.26269S2

MSEM = 126.34657 MSI = 7.50S727
QEIM = 192.06151 QFi = 94.7842,89
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DIRICHLI 'I-.VE;A TII IE Ml L TI\'0.111,L TA IBL ES

a2  m n

1 3 10 30

Method of Moments Maximum Likelihood Fisher's Fisher's
Covariance Matrix Covariance Matrix Information Inverse

2.3209 6.7355 1.3750 4.2090 10.71 -2.604 .239 0.601
6.7355 33.2497 4.2090 18.9501 -2.60 1.037 .601 2.474

BIASNI BIAS MSEM MSE
a, 1.396165 0.4S5078 4.270152 1.61031S8
a, 4.011426 1.791021 49.3412S0 22.1579009

MSEM = 53.611432 MSE = 23.76S220
QEL.M = 4S.274695 QEL = 29.400234

a, a, m n

1 3 40 30

Method of Moments Maximum Likelihood Fisher's Fisher's
Covariance Matrix Covariance Matrix Information Inverse

0.1839 0.4094 0.0823 0.2195 42.86 -10.42 .060 0.150
0.4094 1.6422 0.2195 0.9222 -10.417 4.149 .150 0.618

BIAS.M BIAS MSEM MSE
a, 0.511964 0.077721 0.446043 0.0883497
a2  1.2420.14 0.292713 3.184778 1.0078931

MSI-M = 3.63082 MSE = 1.096243
QEI.M 79.22263 QFL = 67.379283
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a,- (12 m n

1 5 10 30

Mlethod of Moments Maximum Likelihood Fisher's Fisher's

Covariance .Matrix Covariance .Matrix Information Inverse

3.096) 15.8208 1.9116 10.1158 10.4S7-1.57 0.2899 1.2976
15.820S I 15.024S 10.1158 73.1788 -1.572 0.351 1.2976 8.6557

BIASM BIAS MSEM MSE
a, 1.239984 0.575918 4.634425 2.2432696
a, 6.766865 3.659899 160.815227 86.5736542

MSEM = 156.4496 MSE 88.816923
QELM = 89.2794 QEL = 53.809407

02 m n

1 5 40 30

Method of Moments Maximum Likelihood Fisher's Fisher's
Covariance Natrix Covariance Matrix Information Inverse

0.2066 0.9496 0.1074 0.5715 41.949 -6.29 0.0725 .32440
0.9496 5.9745 0.5175 3.5226 -6.289 1.405 0.3244 2.1639

BIASM BIAS MSEM MSE
a, 0.344309 0.098942 0.3251636 0.1171760
a2 1.657210 0.597938 8.7208346 3.8801412

MSEM = 9.04599 MSE = 3.9973172
QELM = 69.64925 QEL = 65.9877250
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aE1  0 2  0 in n

3 3 3 10 30

Method of Noments Nlaximum l ikclihood Fishcr's Fisher's
Covariance M.\atrix Covari:mcv \LL'rix Information Inverse

11.891 8.646 7.3191 3.417 2.861 2.S24 2.45 -1.02 -1.02 .923 .635 .6051
8.646 11.07 7.1634 2.861 3.411 2A12 -1.02 2.452 -1.02 635 .923 .6'051
7.319 7.163 8.9517 2.824 2.,12 3.43S -1.02 -1.02 2.622 .605 .605 .8513

BIASM BIAS MSl"M MSE
a, 3.989816 (.887277 27.81004S 4.2(147086
a, 3.927451 0.S'3922 26.493368 4.174533S
a3 3.072373 0.870821 18.391223 4.1963659

MSEM = 72.694639 MSE = 12.575608
QEI,M = 107.7970,% QEI, = 64.542774

a O 2  a, m n

1 3 5 40 10

Method of Moments Maximum Likelihood Fisher's Fisher's
Covariance Matrix Covariance Matrix Information Inverse

0.226 0.523 0.8543 0.122 0.295 0.485 30.72 -3.19 -3.19 .076 .161 .2611
0.523 2.202 3.0777 0.295 1.167 1.685 -3.19 6.668 -3.19 .161 .657 .8982
0.854 3.077 5.2502 0.485 1.685 2.988 -3.19 -3.19 2.906 .261 .89S 1.617

BIASM BIAS MSEM MSE
a, 0.401361 0.111901 0.3S70097 0.13463S1
a, 1.252126 0.367740 3.7695374 1.3020395
a, 1.820276 0.601499 8.5636105 3.3473450

MSEM = 12.720158 MSE = 4.780227
QFLM =157.781792 QEL =151.413406
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(1 a2 C(3  a4 OS Ct6 n n

1 1 1 1 1 5 10 10

Fisher's Infonnation Infonnation Invcrse

7.7653 -0.71235 .20614 .08818 .. OSSIS .49059
7.7653 .08818 .20614 .OSSIS .49059

7.7653
7.7653

7.7653 .0S18 .08818 .20614 .49059
-0.71235 0.,1150 .49059 .49059 ........ 3.38551

Method of Moments Maximum Likelihood
Covariance Structure Covariance Structure

127.6 2.462
103.0 138.50 2.049 2.394
90.3 89.87 103.3 2.618 2.556 3.621
99.9 99.78 90.7 124.2 1.573 1.524 1.925 1.712
95.4 95.02 87.5 93.8 111.6 3.642 3.471 4.537 2.254 7.524

436.8 447.59 404.9 446.2 411.5 2054. 17.21 16.64 21.57 12.06 31.3 146

BIASM BIAS MSEM NISE
a, 5.930699 0.444315 162.82029 2.6592233
a2 5.771361 0.413110 171.86984 2.5647757
03 5.736776 0.436712 136.22782 3.8115527
CL 5.856497 0.414522 158.52570 1.8840746
as 5.856497 0.443810 144.12501 7.7205665
a6 25.436602 2.40 7 225 2701.14373 151.8331676

MSEM = 3473.71240 MSE = 170.473361
QELM = 2313.20929 QEL = 129.862213
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JA CKK.NIFE RESL'TS (DIRICIILET-.IIL'LTI.N'03II .. L TA BLES k = 2)

I 1 10 40

Biases

JMLE MLE

a -0.2265 .4275
a2 -0.2248 .4161

Mean Squared Error

JMLE NILE

a, 0.3729 1.324
a2 0.3550 1.153

a, at2  m

1 5 10 40

Biases

JNILE MLE

a, -0.4358 0.5030
a, -2.4852 3.1318

Mean Squared Error

JMLE NI LE

ci, 0.3714 1.743
a 10.9462 63.054
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a, Ct2  m n

0.5 ! 10 10

Biases

JMLE M LE

a -0.2040 .2425
a2 -0.4619 .6049

Mean Squared Error

JIMLE M LE

a, 0.0M00 0.4546
a 0.4322 3.1011

a , a, ni n

0.5 0.5 10 10

Biases

JMLE NILE

a -0.1668 0.1963
a2 -0.1663 0.1953

Mean Squared Error

JMLE M LE

a, 0.0798 0.3839
a, 0.0801 0.3605
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